uk.ac.gla.dcs.renaissance.kqpr
Class KernelEigenDecomposition<T extends KernelVector>

java.lang.Object
  extended by uk.ac.gla.dcs.renaissance.kqpr.KernelEigenDecomposition<T>
All Implemented Interfaces:
Serializable
Direct Known Subclasses:
Density, Subspace

public class KernelEigenDecomposition<T extends KernelVector>
extends Object
implements Serializable

Common class shared by fuzzy subspaces and densities

The underlying density/subspace is represented by

such as A X is usually (i.e. AXXTAT is the identity), and the density rho is expressed as
rho = A U S2 UT AT

Author:
B. Piwowarski
See Also:
Serialized Form

Field Summary
 bpiwowar.maths.matrix.DiagonalDoubleMatrix mS
          The singular values
 bpiwowar.maths.matrix.DoubleMatrix2D mY
          The basis of the subspace
 
Constructor Summary
KernelEigenDecomposition(KernelEVD<T> evd, boolean deepCopy)
          Creates an object given a Kernel EVD
KernelEigenDecomposition(KernelVectorList<T> list)
          Creates a one dimensional eigen-decomposition representation
 
Method Summary
 int getRank()
           
 double normalise()
          Normalise with the L2 norm
 double normalise(boolean orthonormalU)
          Normalise the decomposition so that || U x S || = 1
 void trim(int newRank)
          Trim the eigenvalue decomposition to a lower rank
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Field Detail

mY

public bpiwowar.maths.matrix.DoubleMatrix2D mY
The basis of the subspace


mS

public bpiwowar.maths.matrix.DiagonalDoubleMatrix mS
The singular values

Constructor Detail

KernelEigenDecomposition

public KernelEigenDecomposition(KernelEVD<T> evd,
                                boolean deepCopy)
Creates an object given a Kernel EVD

Parameters:
evd -
deepCopy -

KernelEigenDecomposition

public KernelEigenDecomposition(KernelVectorList<T> list)
Creates a one dimensional eigen-decomposition representation

Parameters:
list - A list for vector v
Method Detail

normalise

public double normalise()
Normalise with the L2 norm


normalise

public double normalise(boolean orthonormalU)
Normalise the decomposition so that || U x S || = 1

Parameters:
orthonormalU - Should we expect U to be orthonormal (which should be the case normally)?
Returns:
The norm of the matrix

trim

public void trim(int newRank)
Trim the eigenvalue decomposition to a lower rank

Parameters:
newRank - The new rank of the subspace

getRank

public int getRank()


Copyright © 2011. All Rights Reserved.