|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectuk.ac.gla.dcs.renaissance.kqpr.KernelEigenDecomposition<T>
public class KernelEigenDecomposition<T extends KernelVector>
Common class shared by fuzzy subspaces and densities
The underlying density/subspace is represented by
A X
is usually (i.e.
AXXTAT
is the identity), and the density
rho
is expressed as rho = A U S2 UT AT
Field Summary | |
---|---|
bpiwowar.maths.matrix.DiagonalDoubleMatrix |
mS
The singular values |
bpiwowar.maths.matrix.DoubleMatrix2D |
mY
The basis of the subspace |
Constructor Summary | |
---|---|
KernelEigenDecomposition(KernelEVD<T> evd,
boolean deepCopy)
Creates an object given a Kernel EVD |
|
KernelEigenDecomposition(KernelVectorList<T> list)
Creates a one dimensional eigen-decomposition representation |
Method Summary | |
---|---|
int |
getRank()
|
double |
normalise()
Normalise with the L2 norm |
double |
normalise(boolean orthonormalU)
Normalise the decomposition so that || U x S || = 1 |
void |
trim(int newRank)
Trim the eigenvalue decomposition to a lower rank |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Field Detail |
---|
public bpiwowar.maths.matrix.DoubleMatrix2D mY
public bpiwowar.maths.matrix.DiagonalDoubleMatrix mS
Constructor Detail |
---|
public KernelEigenDecomposition(KernelEVD<T> evd, boolean deepCopy)
evd
- deepCopy
- public KernelEigenDecomposition(KernelVectorList<T> list)
list
- A list for vector vMethod Detail |
---|
public double normalise()
public double normalise(boolean orthonormalU)
orthonormalU
- Should we expect U to be orthonormal (which should be the case
normally)?
public void trim(int newRank)
newRank
- The new rank of the subspacepublic int getRank()
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |